Following is a list of references related to marine biogeochemistry instruments and sensors, and their application. Please contact the IOCCP Office if you have any comments, questions or suggestions for additional resources useful to the community.
|
|
Dickson, A.G., Afghan, J.D. and Anderson, G.C., 2003. Reference materials for oceanic CO2 analysis: a method for the certification of total alkalinity. Marine Chemistry, 80(2), pp.185-197.
|
Spaulding, R. S., DeGrandpre, M. D., Beck, J. C., Hart, R. D., Peterson, B., De Carlo, E. H., et al. (2014). Autonomous in situmeasurements of seawater alkalinity. Environ. Sci. Technol. 48, 9573–9581. doi: 10.1021/es501615x
Seelmann, K., S. Aßmann, A. Körtzinger, 2019. Characterization of a novel autonomous analyzer for seawater total alkalinity: Results from laboratory and field tests. Limnol Oceanogr Methods, 17: 515-532. doi:10.1002/lom3.10329
Seelmann, K., M. Gledhill, S. Aßmann, A. Körtzinger, 2020. Impact of impurities in bromocresol green indicator dye on spectrophotometric total alkalinity measurements. Ocean Sci. doi: 10.5194/os-16-535-2020.
|
Sutton, A. J., Sabine, C. L., Maenner-Jones, S., Lawrence-Slavas, N., Meinig, C., Feely, R. A., Mathis, J. T., Musielewicz, S., Bott, R., McLain, P. D., Fought, H. J., and Kozyr, A.: A high-frequency atmospheric and seawater pCO2 data set from 14 open-ocean sites using a moored autonomous system, Earth Syst. Sci. Data, 6, 353-366, https://doi.org/10.5194/essd-6-353-2014, 2014.
|
Jiang, Z.-P., Hydes, D. J., Tyrrell, T., Hartman, S. E., Hartman, M. C., Campbell, J. M., Johnson, B. D., Schofield, B., Turk, D., Wallace, D., Burt, W., Thomas, H., Cosca, C., and Feely, R.: Application and assessment of a membrane-based pCO2 sensor under field and laboratory conditions. Limnology and Oceanography Methods, 12, 264-280, 2014.
|
DeGrandpre, M.D., Baehr, M.M. and T.R. Hammar. (1999). Calibration-free optical chemical sensors. Anal. Chem., 71, 1152-1159. DeGrandpre, M.D., Hammar, T.R., Smith, S.P., and F.L. Sayles. (1995). In situ measurements of seawater pCO2. Limnol. Oceanog., 40, 969-975.
|
DeGrandpre, M. D. (1993). Measurement of seawater pCO2 using a renewable-reagent fiber optic sensor with colorimetric detection. Anal. Chem. 65, 331–337. doi: 10.1021/ac00052a005
|
DeGrandpre, M. D., Baehr, M. M., and Hammar, T. R. (2000). “Development of an optical chemical sensor for oceanographic applications: the submersible autonomous moored instrument for seawater CO2,” in Chemical Sensors in Oceanography, ed M. S. Varney (Amsterdam: Gordon and Breach publisher), 123–141.
|
Atamanchuk, D., Tengberg, A., Thomas, P. J., Hovdenes, J., Apostolidis, A., Huber, C., et al. (2014). Performance of a lifetime-based optode for measuring partial pressure of carbon dioxide in natural waters. Limnol. Oceanogr. Methods 12, 63–73. doi: 10.4319/lom.2014.12.63
|
Fietzek, P., B. Fiedler, T. Steinhoff, and A. Körtzinger (2014). In situ accuracy assessment of a novel underwater pCO2 sensor based on membrane equilibration and NDIR spectrometry. J. Atm. Ocean. Techn. 31, 181-196.
|
Fiedler, B., P. Fietzek, N. Vieira, P. Silva, H.C. Bittig, and A. Körtzinger (2013). In situ CO2 and O2 measurements on a profiling float. J. Atm. Ocean. Techn. 30, 112-126, DOI: 10.1175/JTECH-D-12-00043.1.
|
Chierici, M.; Fransson, A. and Nojiri, Y., (2006), Biogeochemical processes as drivers of surface fCO2 in contrasting provinces in the subarctic North Pacific Ocean, Global Biogeochem. Cycles 20 GB1009 doi:10.1029/2004GB002356. Murphy, P.P.; Nojiri, Y.; Fujinuma, Y.; Wong, C.S.; Zeng, J.; Kimoto, T. and Kimoto, H., (2001), Measurements of Surface Seawater fCO2 from Volunteer Commercial Ships: Techniques and Experiences from Skaugran, J. Atmos. Ocn. Tech. 18 1719-1734. Nakaoka, S., Nojiri, Y. Miyazaki, C. Tsumori, H. and Mukai, H., (2009) Variations of oceanic pCO2 and air-sea CO2 flux in the North Pacific Ocean since 1995, Proceeding of 8th International Carbon Dioxide Conference, T2-059, Jena, Germany.
|
Characterization of a Time-Domain Dual Lifetime Referencing pCO2 Optode and Deployment as a High-Resolution Underway Sensor across the High Latitude North Atlantic Ocean. Front. Mar. Sci. 4:396. doi: 10.3389/fmars.2017.00396
|
Clarke, J.S. et al. (2017) Developments in marine pCO2 measurement technology; towards sustained in situ observations. TRAC-Trends in analytical chemistry. 88. 351-354. doi: 10.1016/j.trac.2016.12.008
|
Bresnahan, P.J., Martz T.R., Takeshita Y., Johnson K.S., LaShomb M.. 2014. pdfBest practices for autonomous measurement of seawater pH with the Honeywell Durafet, Methods in Oceanography 9, 44-60, doi:10.1016/j.mio.2014.08.003
|
Martz, T. R., Carr, J. J., French, C. R., and DeGrandpre, M. D. (2003). A submersible autonomous sensor for spectrophotometric pH measurements of natural waters. Anal. Chem. 75, 1844–1850. doi: 10.1021/ac020568l
|
Bellerby, R. G. J., Olsen, A., Johannessen, T., and Croot, P. (2002). A high precision spectrophotometric method for on-line shipboard seawater pH measurements: the automated marine pH sensor (AMpS). Talanta 56, 61–69. doi: 10.1016/S0039-9140(01)00541-0
|
Martz, T. R., Connery, J. G., and Johnson, K. S. (2010). Testing the Honeywell Durafet® for seawater pH applications. Limnol. Oceanogr. Methods 8, 172–184. doi: 10.4319/lom.2010.8.172
|
Rérolle V., Ruiz-Pino D., Rafizadeh M., Loucaides S., Papadimitriou S., Mowlem M. & Chen J., (2016). Measuring pH in the Arctic Ocean: colorimetric method or SeaFET? Methods in Oceanography 17: 32–49.
|
Reggiani, E. R., King, A. L., Norli, M., Jaccard, P., Sørensen, K., & Bellerby, R. G. (2016). FerryBox-assisted monitoring of mixed layer pH in the Norwegian Coastal Current. Journal of Marine Systems.
|
Clarke, Jennifer S.; Achterberg, Eric P.; Rerolle, Victoire M. C.; et al. (2015) Characterisation and deployment of an immobilised pH sensor spot towards surface ocean pH measurements. Analytica chimica acta Volume: 897 Pages: 69-80
|
Okazaki, R. R., Sutton, A. J., Feely, R. A., Dickson, A. G., Alin, S. R., Sabine, C. L., et al. (2017). Evaluation of marine pH sensors under controlled and natural conditions for the Wendy Schmidt ocean health XPRIZE. Limnol. Oceanogr. Methods 15, 586–600. doi: 10.1002/lom3.10189
|
Lai C-Z, DeGrandpre MD and Darlington RC (2018) Autonomous Optofluidic Chemical Analyzers for Marine Applications: Insights from the Submersible Autonomous Moored Instruments (SAMI) for pH and pCO2. Front. Mar. Sci. 4:438. doi: 10.3389/fmars.2017.00438
|
Boss, E., Guidi, L., Richardson, M. J., Stemmann, L., Gardner, W., Bishop, J. K., ... & Sherrell, R. M. (2015). Optical techniques for remote and in-situ characterization of particles pertinent to GEOTRACES. Progress in Oceanography, 133, 43-54.
|
Bishop, J. K. B. (2009) Autonomous Observations of the Ocean Biological Carbon Pump. Oceanography , 22 (2), 182-193.
|
See our page HERE. |
Thouron, D., Vuillemin, R., Philippon, X., Lourenço, A., Provost, C., Cruzado, A., et al. (2003). An autonomous nutrient analyzer for oceanic long-term in situ biogeochemical monitoring. Anal. Chem. 75, 2601–2609. doi: 10.1021/ac020696+
|
Sakamoto, C. M., Johnson, K. S., & Coletti, L. J. (2009): Improved algorithm for the computation of nitrate concentrations in seawater using an in situ ultraviolet spectrophotometer. Limnology and Oceanography: Methods, 7(1), 132-143.
|
Riser, S.C., Johnson, K.,Lewis, M.R., Altshuler, T. (2011): Autonomous Measurements of Oceanic Dissolved Nitrate from Commercially Available Profiling Floats Equipped with ISUS APPROVED FOR PUBLIC RELEASE doi:ADA555146
|
Legiret, F. E., Sieben, V. J., Woodward, E. M., Abi Kaed Bey, S. K., Mowlem, M. C., Connelly, D. P., et al. (2013). A high performance microfluidic analyser for phosphate measurements in marine waters using the vanadomolybdate method. Talanta 116, 382–387. doi: 10.1016/j.talanta.2013.05.004
|
Grand, M.M. et al. (2017) A Lab-On-Chip Analyzer for Long-Term in Situ Monitoring at Fixed Observatories: Optimization and Performance Evaluation in Estuarine and Oligotrophic Coastal Waters. Front. Mar. Sci., doi.org/10.3389/fmars.2017.00255]
|
Clinton-Bailey, Geraldine S. et al. (2017) A Lab-on-Chip analyzer for in situ measurement of soluble reactive phosphate: improved phosphate blue assay and application to fluvial monitoring. Environmental Science & Technology, 51 (17). 9989-9995.10.1021/acs.est.7b01581
|
Barus C, Chen Legrand D, Striebig N, Jugeau B, David A, Valladares M, Munoz Parra P, Ramos ME, Dewitte B and Garçon V (2018) First Deployment and Validation of in Situ Silicate Electrochemical Sensor in Seawater. Front. Mar. Sci. 5:60. doi: 10.3389/fmars.2018.00060
|
Tedetti, M., Joffre, P., and Goutx, M. (2013). Development of a field-portable fluorometer based on deep ultraviolet LEDs for the detection of phenanthrene- and tryptophan-like compounds in natural waters. Sens. Actuat. B Chem. 182, 416–423. doi:10.1016/j.snb.2013.03.052
|
Cyr F, Tedetti M, Besson F, Beguery L, Doglioli AM, Petrenko AA and Goutx M (2017) A New Glider-Compatible Optical Sensor for Dissolved Organic Matter Measurements: Test Case from the NW Mediterranean Sea. Front. Mar. Sci. 4:89. doi: 10.3389/fmars.2017.00089
|